Datenblattt Seite 1 von 11

KAN-therm Dynamischer Differenzdruckregler

Anwendung

Das Frese PV Compact kommt in Zweirohrheizungs-, Klima- und Fernwärmesystemen zum Einsatz.

Bei dem Frese PV Compact handelt es sich um ein dynamisches Ventil für die Differenzdruckregulierung, das z.B. im Zusammenspiel mit Thermostatventilen mit Voreinstellung eine umkomplizierte Justierung und VOB-gerechten hydraulischen Abgleich des Systems gewährleistet.

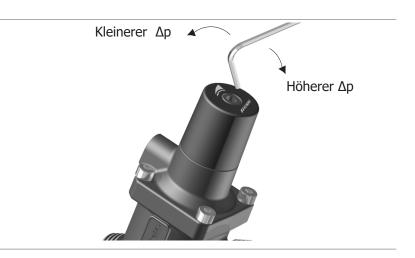
Das Ventil sorgt für eine Reduzierung der Geräusche im System und stellt eine gute modulierende Regulierung sicher.

Vorteile

- Der hohe KV Wert garantiert den niedrigsten Druck-verlust und spart auf diese Weise Pumpenenergiekosten
- Leckagefreie Schließung zu verhindern das der Differenzdruck steigt wenn die Steuerventile in der gesteuerten Strang vollständig geschlossen sind
- Frese PV Compact beseitigt Geräuschprobleme, die von einem zu hohen Differenzdruck im Kreis verursacht werden
- Die Justiereinstellung wird mit Hilfe eines 4mm-Sechskantschlüssel am Ventil vorgenommen.
 Folglich ist nach der Voreinstellung keine Versiegelung des Ventils erforderlich
- Änderung des Auslegungsdifferenzdruckes lassen sich ggf. leicht nach der Installation vornehmen
- Die Justiereinstellung lässt sich problemlos den einfachen Diagrammen auf Seite 7-11 entnehmen
- Problemlose Montage mit unserem passenden Anbauset Art. 2128183248

Merkmale

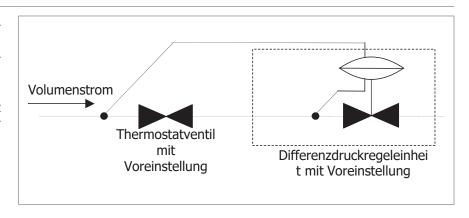
- Maximaler Differenzdruck 450 kPa
- Sehr kompakte Größe für einfache Installation
- Nennweite DN15-DN50
- Maximaler Volumenstrom: 11.500 l/h
- Gewinde: ISO 228

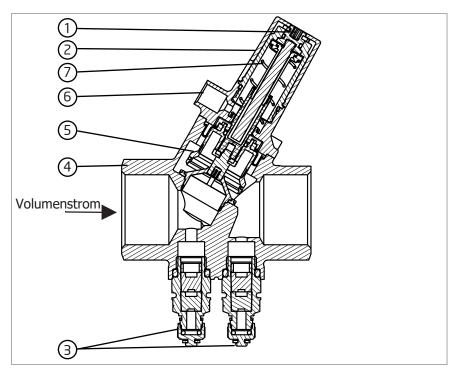


Anbauset Art. 2128183248

Einstellen des Ventils

Der Differenzdruckregler lässt sich leicht mit Hilfe eines 4-mm-Sechskantschlüssel einstellen. Die voreinstellung des Reglers kann anhand der gewünschte Volumenstrom und Differenzdruck via der Voreinstelldiagramme für die betreffende Reglergröße ermittelt werden.


Bei Einstellung des Ventils muss das Ventil zuerst auf Minimum gedreht werden. Hiernach wird die Einstellung lt. Diagramm/Graph vorgenommen.


Konstruktion

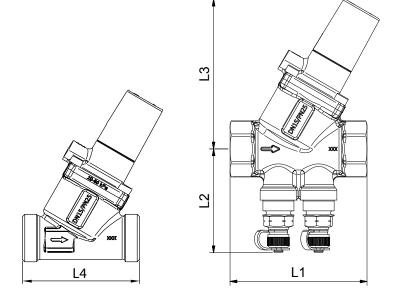
Der Frese PV Compact besteht aus einer Rege-leinheit, einer Voreinstellung und einem Kapil-larrohr für den Anschluss zur Rohrleitung.

Frese PV Compact muss im Rücklauf mit Kapil-larrohr für den Anschluss zur Rohrleitung im Vorlauf installiert werden.

- (1) Stellmutter
- (2) Federabdeckung
- (3) Druckmessnippel
- (4) Gehäuse
- (5) Ventilkolben
- (6) Anschluss für Kapillarrohr
- (7) Feder

Technische Daten

Gehäuse DN15-32: DZR Messing


DN40-50: CW602N GJS-400 Differenzdruckregler: PPS 40% Glas

Voreinstellung: PPO
Feder: Edelstahl
Membrane: HNBR
O-Ringe: Druckstufe: EPDM

Max. Differenzdruck: PN25 450 kPa Temperaturbereich: -10° C bis + 120°C Kapillarrohr: Ø3, L = 1000mm

Das Rohrsystem muss korrekt entlüftet sein, um der Bildung von Lufteinschlüssen vorzubeugen. Geeignet für bis zu 50-prozentige Glykolgemische (Ethylen und Propylen).

Empfehlung: Wasserbehandlung gemäß VDI 2035

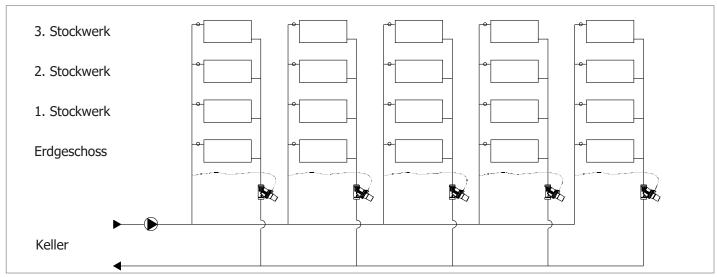
KAN-therm Dynamischer Differenzdruckregler										
Dimension		DN15		DN20		DN25	DN25L	DN32	DN40	DN50
Einstellungs- differenzdruck kPa		5 - 30	20 - 60	5 - 30	20 - 60	5 - 30	20 - 80	20 - 80	20 - 80	20 - 80
Regelbereich kPa		7 - 450 22 - 450 7 - 450 22 - 450		7 - 450	22 - 450	22 - 450	22 - 450	22 - 450		
Vol. Bereich	l/s	0,014-0,167	0,028-0,278	0,028-0,278	0,042-0,556	0,167-0,583	0,208-1,167	0,278-1,389	0,833-2,222	1,389-3,194
	l/h	50-600	100-1.000	100-1.000	150-2.000	600-2.100	750-4.200	1.000-5.000	3.000-8.000	5.000-11.500
	gpm	0,22-2,65	0,44-4,41	0,44-4,41	0,66-8,82	2,65-9,25	3,30-18,52	4,41-22,05	13,21-35,22	22,01-50,63
Kvs	m3/h	2	,9	3,5		4,0	8,7	10,1	15,8	16,2
Dim. mm	L1	75		79		83	100	104	138	138
	L2	57		57		59	63	68	71	77
	L2 *	66		66		68	72	77	80	86
	L3	82		82		85	134	134	156	156
	L4	65		-		-	-	-	-	-
Gewicht	kg	0,71		0,73		0,83	1,57	1,72	3,12	3,55

(*) Regler mit Füll- und Entleerungkugelhahn

Produktprogramm

Dimension		DN15		DN20		DN25	DN25L	DN32	DN40	DN50
		5-30 kPa	20-60 kPa	5-30 kPa	20-60 kPa	5-30 kPa	20-80 kPa	20-80 kPa	20-80 kPa	20-80 kPa
AG/AG, mit Kapillarrohr und 1/4" Übergangsnippel		53-3200	53-3201	-	-	-	-	-	-	-
AG/AG, mit Kapillarrohr und 1/2" Übergangsnippel		53-3202	53-3203	-	-	-	-	-	-	-
IG/IG, mit Druckmess-nip- pel, Füll- und Ent- leerungshahn, Kapillarrohr und 1/4" & 1/2" Übergangsnippel		53-3242	53-3243	53-3244	53-3245	53-3251	53-3247	53-3248	53-3249	53-3250
IG/IG, mit 2 Druckmessnippel, Kapillarrohr und 1/4" & 1/2" Übergangsnippel		53-3204	53-3205	53-3206	53-3207	53-3208	53-3211	53-3214	53-3216	53-3218

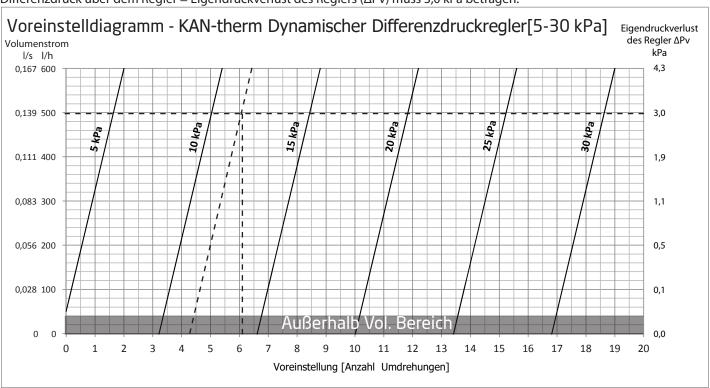
Zubehör


Kapillarrohr ø3mm x 1000 mm	Auf Anfrage
Kupplungen Set 2 Stck., mit Dichtungen	Auf Anfrage

Fertigisolierung - Nur für Heizungsanlagen geeignet

Werkstoff: EPP , Mediumtemperatur bis 120°C

Dim.	
DN10-15-20	38-0857
DN25	38-0858
DN25L-32	38-0860


Beispiel: Skizze eines Heizungssystems; 5 Treppenhäuser mit jeweils 4 Wohnungen.

In diesem Fall besitzt der Frese PV die Aufgabe, den Strangdifferenzdruck auf 12 kPa zu begrenzen. Bei der Spezifizierung der Gebäudeeigenschaften wurde ein Wärmbedarf von 125 l/h je Wohnung festgestellt.

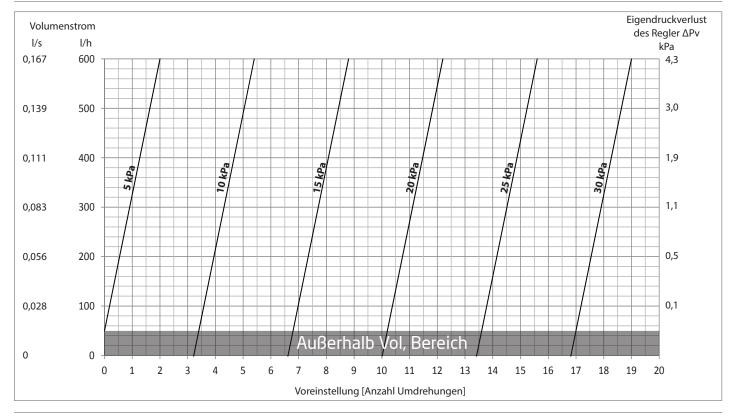
Wie erwähnt, soll für einen Differenzdruck von 12 kPa bei einem Volumenstrom von 4 x 125 = 500 l/h gesorgt werden. Die Justiereinstellung des Frese PV Differenzdruckreglers wird aus dem Diagramm entnommen. Um das Ablesen der Werte zu erleichtern, sind die Graphen, die den Druck im Strang angeben, in Intervallen von 5 kPa abgestuft. Dennoch kann an diesen Graphen auch der für unseren Strang angegebene Druck von 12 kPa abgelesen werden.

Bei dem vorliegenden Beispiel möchten wir in dem Strang einen Druck von 12 kPa bei einem Volumenstrom von 500 l/h beibehalten. Am Schnittpunkt des 12-kPa-Graphen und der horizontalen Linie, die den Volumenstrom von 500 l/h angibt, muss eine Linie im rechten Winkel zur X-Achse gezogen werden, um den Wert für die Voreinstellung abzulesen. Aus dem Diagramm können Sie entnehmen, dass am Differenzdruckregler ungefähr 6 Umdrehungen vorzunehmen sind. Der erforderliche Differenzdruck über dem Regler = Eigendruckverlust des Reglers (ΔPv) muss 3,0 kPa betragen.

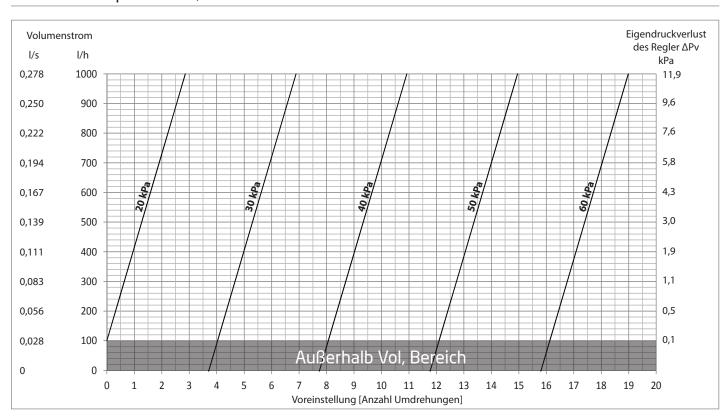
Beispiel

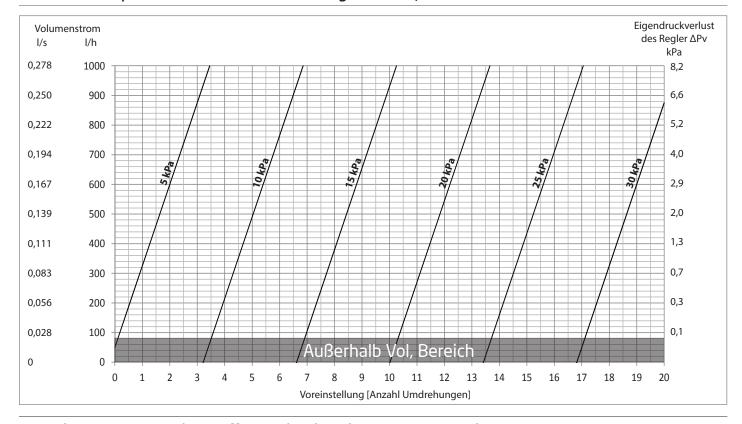
Bitte beachten Sie:

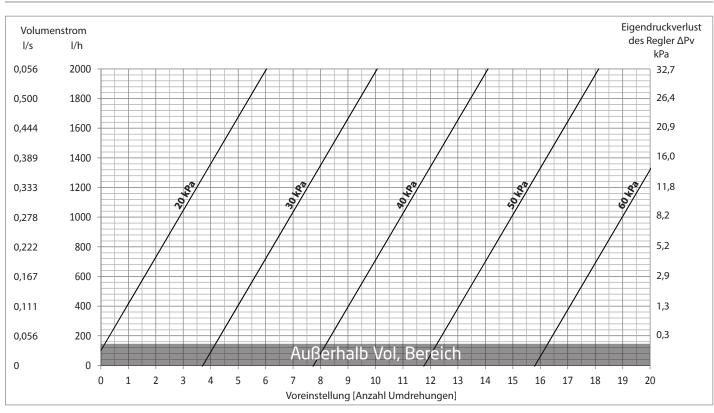
Wenn der Volumenstrom in einem Strang reduziert wird, steigt der Differenzdruck im umgekehrten Verhältnis zum Volumenstrom. Das liegt am P-Band der Justierfeder.

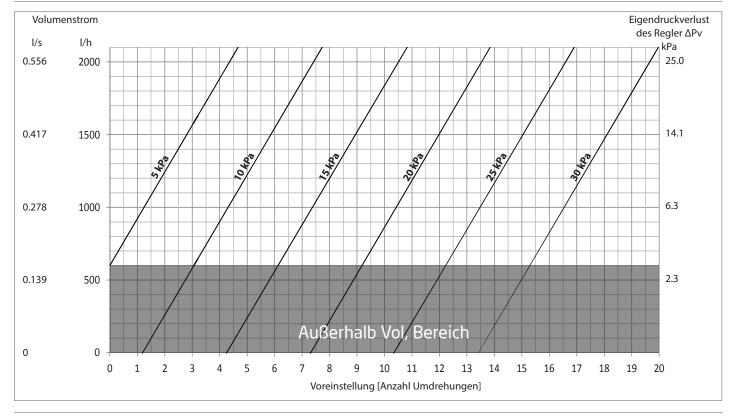

Jedoch wird der Druck nirgendwo im Stang so hoch sein wie der Pumpendruck, der verfügbar gewesen wäre, wenn der Frese PV Compact nicht installiert worden wäre.

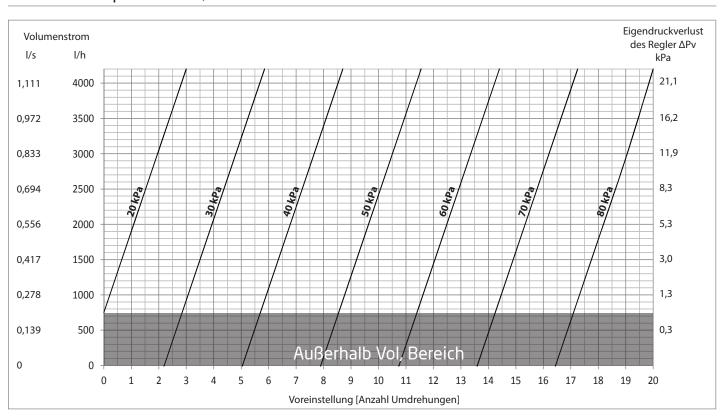
Bei diesem Beispiel steigt der Differenzdruck auf ungefähr 14 kPa, da der Graph parallel zum Volumenstrom verläuft. Außerdem können Sie aus dem Diagramm stets ablesen, welcher Differenzdruck im Strang herrscht, sofern der Volumenstrom unterhalb des bemessenen Werts von 500 l/h liegt.

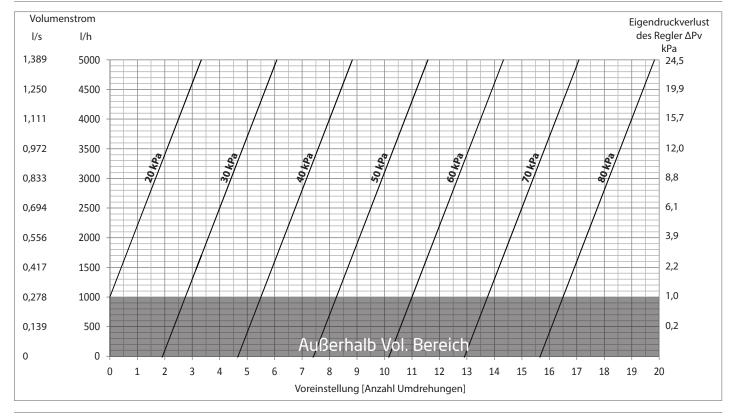

Der graue Bereich in der Unterseite des Diagramms zeigt Volumenstrom außerhalb des Bereichs.

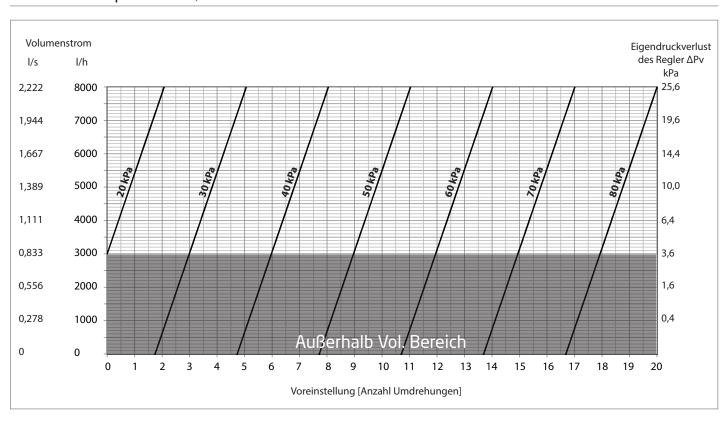

Frese PV Compact DN15, 5-30 kPa

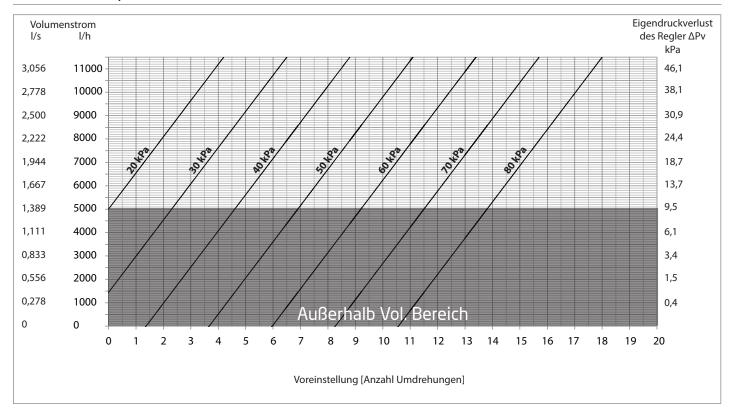

Frese PV Compact DN15, 20-60 kPa


KAN-therm Dynamischer Differenzdruckregler DN20, 5-30 kPa


KAN-therm Dynamischer Differenzdruckregler DN20, 20-60 kPa


Frese PV Compact DN25, 5-30 kPa


Frese PV Compact DN25L, 20-80 kPa


Frese PV Compact DN32, 20-80 kPa

Frese PV Compact DN40, 20-80 kPa

Frese PV Compact DN50, 20-80 kPa

Erläuterungen zu den technischen Spezifikationen

Bei dem Differenzdruckregler handelt es sich um ein dynamisches Regelventil zur Differenzdruckregulierung, das die Option bietet, den Differenzdruck vor Ort einzustellen, ohne den Betrieb zu unterbrechen.

Der Differenzdruckregler soll den Differenzdruck in einem Strang begrenzen.

Die Einstellung des Differenzdruckregler darf nur mit Hilfe eines Sechskantschlüssels erfolgen.

Die Richtung des Volumenstroms ist dauerhaft am Differenzdruckregler markiert.

Druckstufe PN25.

Das Ventil ist mit einem Differenzdruck bis zu 450 kPa zu betreiben.

Das Ventil muss einen Regelbereich von 5-30 kPa, 20-60 kPa oder 20-80 kPa haben.

Das Ventil muss einen Gummisitz haben, um eine Leckagefreie Schließung zu sicheren.

Frese A/S übernimmt keine Haftung für etwaige Fehler in Katalogen, Broschüren und anderen Drucksachen. Wir behalten uns das Recht vor, unsere Produkte ohne vorhergehende Ankündigung zu ändern. Dies gilt auch für bereits bestellte Produkte, sofern die bestehenden Spezifikationen durch die Änderung unbeeinflusst bleiben. Alle Warenzeichen in diesem Dokument sind Eigentum der Frese A/S. Alle Rechte vorbehalten.

Frese A/S Sorøvej 8 DK- 4200 Slagelse Tel: +45 58 56 00 00 Fax: +45 58 56 00 91 info@frese.dk